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ID Rahdom Variables

Consider n random variables X,, X,, ... X,

« X; are all independently and identically distributed (1.1.D.)

« All have the same PMF (if discrete) or PDF (if continuous)
« All have the same expectation

» All have the same variance

11D 1d



The sum of independent, identically
distributed variables:

Y = zn:Xz-
1=0

Is normally distributed:

Y ~ N(nu,no?)

where p = FE|X;]

0'2 — V&I’(XZ)

Piech, CS106A, Stanford University




By the Central Limit
Theorem, the sample
mean of |ID variables are
distributed normally.
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Motivating Example

- You want to know the true mean and variance of
happiness in Buthan

« But you can’t ask everyone.
« Randomly sample 200 people.

= Your data looks like this:

Happiness = {72, 85, 79, 91,68, ... , 71}

« The mean of all of those numbers is 83. Is that the true
average happiness of Bhutanese people?






Sample




Collect one (or more) numbers from each person






IID Samples

Consider n |ID samples:

X17X27°°°7Xn
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IID Samples

We call this the underlying distribution

IID Samples =[]
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IID Samples

We call this the underlying distribution
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IID Samples = [20]



IID Samples

We call this the underlying distribution
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20 30 40
value

IID Samples = [20, 38]



IID Samples

We call this the underlying distribution

o0
Wl

Probability

20 30 40
value

IID Samples = [20, 38, 32]



Probability

o0
Wl

IID Samples

We call this the underlying distribution

20 30 40
value

IID Samples = [20, 38, 32, ..., 38]

LN
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Sample Mean

Consider n random variables X4, X,, ... X,

« X; are all independently and identically distributed (1.1.D.)
» Have same distribution function F and E[X] = u
« We call sequence of X; a sample from distribution F

« Sample mean:)?:iXi
— i=1 N
« Compute E[X]

] g

i=1 N

] & 11
nzll [X,] nzllu =

- X is “unbiased” estimate of 1 (E[X]= u)



Average Happiness

Sample Mean

Average Happiness

0
(U
—

Bhutan



Sample Mean: .

=

X=>=

¥y

Size of the sample

Piech, CS106A, Stanford University



Sample Variance

- Consider n |.1.D. random variables X;, X,, ... X,
- X; have distribution F with E[X] = ¢ and Var(X)) = o~
« We call sequence of X; a sample from distribution F

» Recall sample mean: )?:in where E[X]= u
i=1 N

- Sample deviation: X - X, fori=1,2,...,n

n _ v\2
» Sample variance: S° = Z(Xi )1()
i=1 n—

. What is E[S?]?
. E[S?] = 0o?
- We say S?is “unbiased estimate” of o~



| Believe What | See



Intuition that E[S?] = o2

_ M)2 This is the
actual mean

Mz
>

Population —> o’

variance ._
1=1

Unbiased (X, — X)2 This is the
sample variance ZI: sample mean
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Intution that E[S$?] =

_ M)2 This is the

Population —> o’ actual mean

variance

Mz
>

1=1

Unbiased (X, X) This is the
sample variance ZI: sample mean

The variance of the sample mean? Related to population variance

X H
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Proof that E[S?] = o2 (just for reference)

E[Sz]:E{Zn: (Xi_)f)ﬂ = (n—1)E[Sz]=E{Zn:(XZ.—X)2}

n_

n

(n—DE[S*]= E| D (X, —X)Z} - E[i((xi ~ )+ (u—X))z}

| i=1

_E i(Xi—u)z+i(ﬂ—X)2+2i(Xl-—u)(u—X)}

= E| Y (X, ~ ) +n(u— X7 +2(u- XY (X, —u)}

=E i(Xi - 1) +n(pu—X)* +2(u—X)n(X—u)}

| i=1

=E Zn:(Xi —p)’ —n(u—X)z} = iE[(X,- — ) 1= nE[(u—X)’]

2
o)

=no’ —nVar(X)=no’ —-n—=no" —o° =(n—-1)oc’
n

. So, E[S?] = &2



Average Happiness

Sample Mean

Average Happiness Variance of Happiness
83
( %
g
o,
S
= 450
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Sample Variance: .
4Mple megqp

Nl

X, -X
Z( )

7

Makes it “unbiased”

Piech, CS106A, Stanford University



No Error Bars ®



Variance of Sample Mean

By central limit theorem:

X XN D)
Var(X') — %2

Probability density of sample
mean

-

61 83 104 Mean value




Variance of Sample Mean

Consider n I.I.D. random variables X;, X,, ... X,
- X; have distribution F with E[X] = ¢ and Var(X)) = o~
« We call sequence of X; a sample from distribution F

» Recall sample mean: )?=in where E[X]= u
i=1 N

= What is var(X)?

Var(X) = Var Zn:X"j:(lj Var( n Xl.j

2
O

n



Standard Error of the Mean

Var(X) = Var(Zn: A j — (lj Var(Zn: X ij — 0_2

i=z1 N n n

2
— 0}
Var(X) = —
T
SQ Since S, is an
— F unbiased
estimate
_ S2 Change variance to
Std(X) =4/ — standard deviation
T
450 The numbers for our
— — Bhutanese poll
200 P
— 1.5 Bhutanese standard

error of the mean



Sample Mean

Average Happiness

Average Happiness Variance of Happiness
Std(X)

83 ( ==
£ Std(S2)?
o,
S
= 450

|
0 0
Bhutan Bhutan

Claim: The average happiness of Bhutan 1s 83 & 2



Bootstrap:
Probability for Computer Scientists



Bootstraping allows you to:
« Know the distribution of statistics
» Calculate p values



Probability Density

Hypothetical

What is the probability that a Bhutanese peep is just
straight up loving life?

o0
(V)

61 83 104
Happiness



Hypothetical

What is the probability that the mean of a sample of 200
people is within the range 81 to 85?

o0
(V)

Probability Density

61 83 104
Happiness



Probability Density

Hypothetical

What is the variance of the sample variance of
subsamples of 200 people?

o0
(V)

61 83 104
Happiness



Key Insight

You can estimate the PMF of the underlying distribution,
using your sample.”

2
2 83
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61 83 104
Happiness

* This is just a histogram of your data!!



Key Insight

IID Samples Sample Distribution

90,
92,
92,
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Bootstrapping Assumption

Fa~ F
T N\

The underlying The sample
distribution distribution

(aka the histogram of
your data)



Algorithm

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
a. Resample sample.size () from PMF
b. Recalculate the stat on the resample
3. You now have a distribution of your stat



Bootsirap of Means

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
a. Draw sample.size () new samples from PMF
b. Recalculate the mean on the resample
3. You now have a distribution of your means



Bootsirap of Means

l———\,-r—\_!}

:K\‘ PMF
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Bootstrap Algorithm (sample):
[ 1. Estimate the PMF using the sample ]
2. Repeat 10,000 times:
a. Draw sample.size () new samples from PMF
b. Recalculate the mean on the resample
3. You now have a distribution of your means




Bootsirap of Means

l———\,-r—\_!}

:K\‘ PMF

61 83 104 Happiness

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
| 2. Repeat 10,000 times: ]
a. Draw sample.size () new samples from PMF
b. Recalculate the mean on the resample
3. You now have a distribution of your means




Bootsirap of Means

PMF

61 83 104 Happiness

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
La. Draw sample.size () new samples from PMF]
b. Recalculate the mean on the resample
3. You now have a distribution of your means




Bootsirap of Means

PMF

61 83 104 Happiness

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
a. Draw sample.size () new samples from PMF
|[b. Recalculate the mean on the resample |
3. You now have a distribution of your means

Means = [82.7]



Bootsirap of Means

l———\,-r—\_!}

:K\‘ PMF

61 83 104 Happiness

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
[2. Repeat 10,000 times: ]
a. Draw sample.size () new samples from PMF
b. Recalculate the mean on the resample
3. You now have a distribution of your means

Means = [82.7]



Bootsirap of Means

:KPMF

61 83 104 Happiness

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
La. Draw sample.size () new samples from PMF]
b. Recalculate the mean on the resample
3. You now have a distribution of your means

Means = [82.7]



Bootsirap of Means

:KPMF

61 83 104 Happiness

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
a. Draw sample.size () new samples from PMF
|b. Recalculate the mean on the resample |
3. You now have a distribution of your means

Means = [82.7, 83.4]



Bootsirap of Means

:K\‘ PMF

61 83 104 Happiness

Bootstrap Algorithm (sample):

1. Estimate the PMF using the sample
2. Repeat 10,000 times:

a. Draw sample.size () new samples from PMF
_ b. Recalculate the mean on the resample |
3. You now have a distribution of your means

\

Means = [82.7, 83.4]



Bootsirap of Means

l———\,-r—\_!}

:K\‘ PMF
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Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
a. Draw sample.size () new samples from PMF
b. Recalculate the mean on the resample
[3. You now have a distribution of your means]

Means = [82.7, 83.4, 82.9,91.4,79.3,82.1, ..., 81.7]



Probability of mean from

sample of size 200

-

Bootsirap of Means

Means = [82.7, 83.4, 82.9,91.4,79.3,82.1, ..., 81.7]

61 83 104 Mean value



Probability of mean from

sample of size 200

-

Bootsirap of Means

Means = [82.7, 83.4, 82.9,91.4,79.3,82.1, ..., 81.7]

E[X]

61 83 104 Mean value



Probability of mean from

sample of size 200

-

Bootsirap of Means

What 1s the probability that the mean 1s 1n the range 81 to 857

E[X]

61 83 104 Mean value



Sample Mean

Average Happiness

Average Happiness Variance of Happiness
Std(X)

83 ( ==
£ Std(S2)?
o,
S
= 450

|
0 0
Bhutan Bhutan

Claim: The average happiness of Bhutan 1s 83 & 2



Bootsirap of Variance

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
a. Draw sample.size () new samples from PMF
b. Recalculate the wvariance on the resample
3. You have a distribution of your variances



Bootsirap of Variance

l———\,-r—\_!}

:K\‘ PMF
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Bootstrap Algorithm (sample):
[ 1. Estimate the PMF using the sample ]
2. Repeat 10,000 times:
a. Draw sample.size () new samples from PMF
b. Recalculate the var on the resample
3. You now have a distribution of your vars




Bootsirap of Variance

l———\,-r—\_!}

:K\‘ PMF
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Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
| 2. Repeat 10,000 times: ]
a. Draw sample.size () new samples from PMF
b. Recalculate the var on the resample
3. You now have a distribution of your vars




Bootsirap of Variance

PMF

61 83 104 Happiness

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
La. Draw sample.size () new samples from PMF]
b. Recalculate the var on the resample
3. You now have a distribution of your vars




Bootsirap of Variance

PMF

<€ >

61 83 104 Happiness

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
a. Draw sample.size () new samples from PMF
|[b. Recalculate the vars on the resample |
3. You now have a distribution of your vars

Vars = [472.7]



Bootsirap of Variance

l———\,-r—\_!}

:K\‘ PMF
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Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
[2. Repeat 10,000 times: ]
a. Draw sample.size () new samples from PMF
b. Recalculate the var on the resample
3. You now have a distribution of your vars

Vars = [472.7]



Bootsirap of Variance

:KPMF
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Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
La. Draw sample.size () new samples from PMF]
b. Recalculate the var on the resample
3. You now have a distribution of your vars

Vars = [472.7]



Bootsirap of Variance

>
61 83 104 Happiness

:KPMF
A

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
a. Draw sample.size () new samples from PMF
|b. Recalculate the var on the resample |
3. You now have a distribution of your vars

Vars = [472.7, 478.4]



Bootsirap of Variance

l———\,-r—\_!}

:K\‘ PMF
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Bootstrap Algorithm (sample):

1. Estimate the PMF using the sample
2. Repeat 10,000 times:

a. Draw sample.size () new samples from PMF
_ b. Recalculate the var on the resample y
3. You now have a distribution of your vars

\

Vars = [472.7, 478.4]



Bootsirap of Variance

l———\,-r—\_!}

:K\‘ PMF
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Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
a. Draw sample.size () new samples from PMF
b. Recalculate the var on the resample
[3. You now have a distribution of your vars ]

Vars = [472.7,478.4,469.2, ...,476.2]



Bootsirap of Variance

Sample Vars = [472.7,478.4,469.2, ..., 476.2]

Std(S?) = 46.9

Probability mass of variances (S?)

-

500 1000 Variance values (S?)



Sample Mean

Average Happiness

Average Happiness Variance of Happiness
Std(X)

83 ==
3= Std(S°)
S
= 450

|
0 0
Bhutan Bhutan

Claim: The average happiness of Bhutan 1s 83 & 2



Algorithm in Practice

-

def resample (samples) :
# Estimate the PMF using the samples
# Draw K new samples from the PMF

Original samples

———

O_r_l_r/_ 61 33 104

PMF




Algorithm in Practice

-

def resample (samples) :
# Estimate the PMF using the samples
# Draw K new samples from the PMF
return np.random.choice (samples, K,

replace = True)
count(X = £k
P(X =k) = ( )
n
E Original samples
o—r_'_r/_
61 &3 104 X




Algorithm

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
a. Resample sample.size () from PMF
b. Recalculate the stat on the resample
3. You now have a distribution of your stat



Algorithm in Practice

Bootstrap Algorithm (sample):
1. Repeat 10,000 times:
a. Choose sample.size elems from sample,
with replacement
b. Recalculate the stat on the resample
2. You now have a distribution of your stat




To the code!



Bootstrap provides a way
to calculate probabilities of
statistics using code.

Piech, CS106A, Stanford University



Bootstrap




Bradley Efron

Invented bootstrapping in 1979
Still a professor at Stanford

Won a National Science Medal



Works for any statistic™

*as long as your samples are |ID and the underlying distribution
doesn’t have a long talil



Null Hypothesis Test

Population 1 Population 2
4.44 2.15
3.36 3.01
5.87 2.02
2.31 1.43
3.70 1.83

H1 = 3.1 H2 = 2.4

Claim: Population 1 and population 2 are different distributions with a
0.7 difference of means



Midterm



Midterm (part 1)
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20,000 4

15,000 4

10,000 4

5,000

Midterm (part 2)

Examples of the Logit-Normal Distribution

Birth years of American girls named Lauren

u=0 0=05
n=1 0=05
|

— u=25,0=05

0

1940

1920

1930

1950

1960

1970

1980

1990 2000 2

1900 1910
The median iving girl named Lauren was born arcund 1992 and ranges from 16 to 29 years old.




5
Std(X) = 19.5

Midterm Distribution

X ~ LogitNorm(p = 1.3,0% = 1.1)

W Midterm Histogram
— LogitNorm
E|X]=2895

F'(0.5) = 92.0
P(Perfect) = 0.009

Q \Q (\9 %Q N °>Q (OQ /\Q OOQ QQ\QQ\\Q\%Q
Midterm Score bucket (m)



Midterm Distribution

X ~ LogitNorm(p = 1.3,0% = 1.1)

Advanced_

M Midterm Histogram Understanding

— LogitNorm

Core
Understanding

PHORLDEOLPHN
Midterm Score bucket (m)

O



Midterm Cumulative Density

1.0
0.9
0.8
0.7
0.6

§0.5
0.4
0.3
0.2
0.1
0.0

0 20 40 60 80 100 120
Midterm Score (x)



Midterm Distribution

Work on Details

W Midterm Histogram

More Rock on

Practice

Iron out
fundamental

Time to strategize .

uipREEE
Q \Q (\9 %Q N °>Q (OQ (\Q OOQ QQ\QQ\\Q\%Q
Midterm Score bucket (m)




0.64

- 10.56

0.48

10.40

10.32

10.24
0.16

0.08

0.00



